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Abstract. In this contribution, recently published new semi-analytical solution for the moving mass 

problem [1] is extended to account for the transient terms that adapt the initial part of the complete solution 

in a way to match the initial conditions. It is assumed that a mass and a vertical force with harmonic 

component move by constant velocity along a horizontal infinite beam posted on a two-parameter visco-

elastic foundation. The new semi-analytical solution is presented as a sum of truly steady-state terms, 

harmonic terms induced by the moving mass and transient terms adapting the initial conditions. Closed-

form formula is given for the first two types of vibrations. It is concluded that transient terms have in most 

cases almost negligible effect on the full solution and that the initial conditions can significantly affect the 

amplitudes of the induced harmonic vibrations, but the induced frequencies are kept without any changes. 

1 Introduction  

Vibration analyses of beam structures under moving 

loads undoubtedly contributed to the design of modern 

railway lines. Deep understanding of dynamic 

phenomena related to train-track-soil interactions, and 

therefore, questions regarding the moving load and 

moving mass problems still attract the scientific 

community. New modelling approaches and solution 

methods are always welcomed to underline the necessary 

understanding. In this context, analytical and semi-

analytical solutions have the unquestionable advantages 

of closed form solutions and quickly obtainable high-

precision results solely in places of interest without the 

necessity to test numerical parameters ensuring the result 

convergence. 

When the train passage is modelled by moving 

forces, then usually the critical velocity is the important 

feature to analyse. When inertia of the moving load is 

included, then additional feature as instability comes into 

account. Several authors have dedicated significant part 

of their research to instability of moving objects. 

Nevertheless, usually the main concern was on the 

identification of the instability interval, [2]. 

Considering the fact that someone may want to 

calibrate a numerical model, or control the unstable 

region, then it is pertinent not only to identify the 

instability velocity interval, but also determine the exact 

vibration pattern that will lead to instability. With this in 

mind the new semi-analytical solution was derived in 

closed form. The exact evolution of vibrations allows 

determining not only the onset of instability, but also its 

severity.  

In Section 2 the problem is defined and solved. In 

Section 3 some examples and their validation are shown. 

The paper is concluded in Section 4. 

2 Problem statement and solution 

2.1. Assumptions  

A uniform motion of a mass traversing a horizontal 

infinite beam posted on a two-parameter visco-elastic 

foundation is assumed. The beam has uniform cross 

section, its material is homogeneous and isotropic and it 

obeys linear elastic Euler-Bernoulli theory. It is further 

assumed that the moving mass is always in contact with 

the beam and no friction is considered at the contact 

point. The aim of the analysis is to determine full 

deflection shapes of the beam as a function of space and 

time, describing entirely the vertical vibrations induced 

by the moving mass and force. The problem at hand is 

depicted in Figure 1. 

 

 

 

 

 

 

 

 

 

 
Fig. 1. Infinite beam on a visco-elastic two-parameter 

foundation subjected to a moving load and a normal force. 
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In Figure 1 the following symbols are used: EI, m, 

and N stand for the bending stiffness and mass per unit 

length of the beam, and a normal force acting on the 

beam normal axis. k, kp and cb are Winkler’s and 

Pasternak’s moduli of the foundation and the coefficient 

of viscous damping of the foundation. Further in Figure 

1, M designates the moving mass, P is the constant part 

of the moving force and the effect of the surface 

irregularity is approximated by a harmonic component 

with sine evolution in time t, which has an amplitude P0, 

a frequency ωf and a phase angle φf. The harmonic part 

of the moving force is given more conveniently in the 

complex domain, thus the phase angle φf + 3π/2 is used 

to ensure the correspondence with sin(ωft + φf). Finally, 

v is the constant velocity of the mass/force system. 

2.2 Solution 

At first, the deflection of the loading point is derived. 

Next, the full deflection shapes can be obtained by 

joining two semi-infinite beams. The solution procedure 

for the determination of the loading point displacement 

follows these steps: moving coordinate r is introduced; 

dimensionless parameters are substituted; Laplace 

transform in time is applied; Fourier transform in space 

is applied; and then the analytical form of the 

displacement image can be obtained and inverse Fourier 

transform can be applied in an analytical way to 

determine the Laplace image of the loading point 

displacement. 

To simplify the expressions, a leading polynomial 

form can be designated as 
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where p and q are transformed variables: iq was used in 

Laplace transform in dimensionless time τ, thus 

corresponds to frequency; p was used in Fourier 

transform in dimensionless spatial coordinate ξ, thus 

corresponds to the transformed moving space coordinate. 

Other parameters are specified as 
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where vcr is the critical velocity of a constant force 

moving uniformly on the beam on Winkler’s foundation 

k. Then the Laplace image of the loading point 

displacement is given by 
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where C(q) is the frequency dependent flexibility of the 

foundation. 

As the last step, the inverse Laplace transform is 

accomplished. This starts with the definition  
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where a is positive, real and greater than the real part of 

all singularities. In the expression above, the Laplace 

variable s=iq. Further, the variable s is switched to q and 

the final result is obtained by contour integration. 

For correct application of the methods of the contour 

integration, it is necessary to analyse the behaviour of 

function K(q). It is possible to conclude that the 

polynomial expression from Eq. (1) has always four 

complex roots and thus K(q) can be obtained by the 

contour integration as well. The only exception is when 

D(p,q) has real and multiple roots, which can only 

happen when D(p,q) has real coefficients, which only 

occurs when Im(q)=iηb. By further analysis it can be 

concluded that if certain two values of q have the same 

real parts and the imaginary parts are at the same 

distance from iηb, then the corresponding K(q) values are 

complex conjugates of each other. This also means that 

there is a discontinuity, or in other words, multiple value 

of K(q) in complex q-plane along the horizontal line 

which crosses the imaginary axis at iηb. In fact, by 

analysing the nature of the roots of D(p,q) with real 

coefficients, it can be concluded, that these is a certain 

frequency, which can be called the “cutting frequency”, 

qC, for which D(p,q) has multiple roots. The region with 

four complex roots is then limited by a certain velocity 

ratio αC. For velocities lower than αC there is an interval 

(-qC+iηb, +qC+iηb) where the imaginary part of K(q) is 

zero, which ensures continuity along the part of the line 

designated above as discontinuity line. Such region is, 

however, not identified for velocity ratio higher than αC, 

and discontinuity in the imaginary part of K(q) is 

satisfied along the full discontinuity line. 

Due to the occurrence of multiple values as described 

above, the contour integration must be adapted in the 

way to avoid these regions. Thus 
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where Ibc is the contribution obtained by the integration 

along the discontinuity regions, which can be named as 

branch cuts, however, their meaning is slightly different, 

because their position is not arbitrary. Other parts of the 

final result expressed in Eq. (8) are harmonic functions 

that are obtained by the sum of all residues. The type of 

residues additionally separates the solution to purely 



 

steady state solution, that could be obtained by double 

Fourier transform, [3]. In this case it is composed by the 

residue at q=0, which represents the constant force 

contribution in form of 
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and by the residue at q= f , which represent the 

harmonic force contribution as 
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Other harmonic parts must be added by the 

remaining residues. This is, however, not an easy task, 

because the poles must be determined as complex roots 

of complex equation, which reads 
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It is possible to conclude that in such a case the roots 

will always come in pairs, connected by 
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where * stand for complex conjugate value. Most 

commonly, there is only one pair of these roots, but there 

can be also two pairs or none. Having a root, qM, the 

corresponding harmonic part is given by 
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for the constant force and by 
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for the harmonic one. 

2.3 Influence of the initial conditions  

The solution presented in the previous section was 

directly derived for the homogeneous initial conditions. 

When these conditions are not homogeneous, then the 

application of the Laplace transform must be adapted 

accordingly. Changes must be introduced on both sides 

of the transformed governing equation. On the right-

hand side, it must be simply added 
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The other term, located on the left-hand side is not so 

easy to implement: 
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Nevertheless, the leading effect can be attributed to the 

terms in Eq. (15) that directly express the initial 

conditions of the loading point and can significantly 

affect the amplitudes of the induced harmonics. For 

instance, the function for which residues are calculated 

in Eq. (8) for non-zero initial displacement and constant 

force changes to 
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which alteres the contribution in Eq. (13) to 
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3 Examples 

Examples presented in this section are related to railway 

applications. Only quite soft foundation is assumed, and 

the effect of Pasternak foundation, normal force and 

harmonic force is neglected. More details about these 

additional influences can be found in [1]. Moving force 

will be considered as a typical axle load, and for 

simplicity, the moving mass is assumed to have a value 

for which the moving force would represent the 

associated weight, according to approximate value of the 

gravity acceleration 10m/s2. Nevertheless, dimensionless 

parameters are used and thus same results would be 

possible to obtain by different combinations of the input 

data. Values are listed in Table 1. 

Table 1. Values used in numerical examples. 

Property Value 

EI  (106N m2) 6.4 

m  (kg m-1) 60 

k  (106N m-2) 1 

P  (103N) 100 

M  (kg) 10000 

 

The associated characteristics and dimensionless 

values for this case are 

 290.4m/scrv  , 
10.445m  , 74.1M   (15) 

Further, wst=0.022m, which is the static displacement 

exerted by the constant part of the force on the beam on 

a Winkler foundation, that is used to obtain 

dimensionless displacements. 



 

Firstly, the induced frequencies for the case of 

damping ηb = 0.05 are shown. These can be obtained by 

the iterative procedure described in [1]. Their evolution 

with velocity ratio is plotted in Figure 2. To each value 

shown there, another one exists in conformity with Eq. 

(12). It is seen that the values smoothly progress and the 

negative imaginary part, as the onset of instability is 

reached at α=1.07. It is also seen that when discontinuity 

in K(p,q) is reached, the frequency lines are cut. This 

happens when the imaginary part of the frequency 

reaches ηb, i.e. 0.05. This example was selected as an 

illustrative case, because there are certain velocity ratios 

for which none, one or two pairs of induced frequencies 

exist. 
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Fig. 2. Mass induced frequencies: a) the real part, b) the 

imaginary part. 

 

Results for displacement evolution under the load are 

shown next. In all further figures validation on finite 

beams is presented as black dotted line. It is seen that the 

agreement between the results is excellent. In Figure 3 

the case where only one pair of induced frequencies 

exists is shown. α = 0.344 is selected (100m/s) and 

comparison is done for ηb = 0 and 0.1. It is seen that 

when there is no damping, there are large oscillations 

around the steady-state force displacement, with 

amplitude practically exactly equal to this steady state 

value. Such oscillations theoretically last for ever. When 

damping is included, these oscillations are gradually 

damped and after some time only the truly steady-state 

stage exists. In Figure 3 only the harmonic parts are 

plotted, namely the ones from Eq. (9) and (13), because 

the transient part is completely negligible. It was shown 

in [4] that the transient part is important in this case only 

for low mass ratios, approximately equal to 10 or lower. 
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Fig. 3. Displacement under the load: a) ηb = 0, b) ηb = 0.1. 

 

Next case is for ηb = 0.05. It is seen in Figure 2 that 

last one pair of frequencies occurs for α = 0.96. Then for 

α = 0.97 - 0.99 there are no induced frequencies, and one 

pair is gained again for α = 1. This means that these 

cases must have significant contribution of the transient 

part, that needs to adjust the initial conditions. Results 

are shown in Figures 4, 5 and 6. In Figure 4 the case of α 

= 0.96 is plotted. 
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Fig. 4. Displacement under the load for α = 0.96: harmonic part 

(red), transient part (violet), full solution (green). 
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It is seen in Figure 4 that the harmonic part starts at 

values very different from the initial conditions, 

therefore quite large values of the transient part must 

correct this fact. But the influence of the transient 

solution rapidly disappears. 
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Fig. 5. Displacement under the load for α = 0.97: harmonic part 

(red), transient part (violet), full solution (green). 

 

In Figure 5 the case for α = 0.97 is plotted. As there 

is no induced frequency, the harmonic part is constant, 

as it represents the steady-state solution only. Large 

influence of the transient solution corrects the initial 

conditions in the same way as before, and rapidly 

disappears.  
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Fig. 6. Displacement under the load for α = 1: harmonic part 

(red), transient part (violet), full solution (green). 

 

When α reaches 1, there is again one pair of induced 

frequencies. This case is plotted in Figure 6. It is seen 

that as in all other cases, the transient part adjusts the 

initial conditions and then its effect over the solution is 

negligible.  

Last example shown in this paper is the case when 

two pairs of induced frequencies exist. In such cases the 

second pair has always small influence on the solution, 

because it has large imaginary part, that is positive and 

thus quickly damp the vibration. Nevertheless, it is 

necessary to account for such solution, otherwise the 

initial conditions would be violated. The case selected 

has ηb = 0.2 and α = 1.26, which is the first velocity ratio 

where two pairs of induced frequencies occur for such 

level of damping. Results are shown in Figure 7. 
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Fig. 7. Displacement under the load for α = 1.26: harmonic part 

(red), transient part (violet), full solution (green). 

 

In Figure 7 it is again seen that the transient part has 

negligible effect. The case selected belongs already to 

unstable vibrations, as can be verified by increasing 

amplitude of the vibrations. It can thus be concluded that 

the validity of the derived solution is not restricted to 

some specific velocity range. 

4 Conclusion 

In this paper closed form solution for moving mass 

problem was derived and validated. Several cases were 

discussed with respect to the number of induced pairs of 

frequencies and dominances of the distinct parts that 

compose the full solution.  
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