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Abstract. Phenomena associated with railway dynamics are usually analysed by using numerical 

approaches due to high computational complexity of such systems. However, classical methods based on 

analytical modelling are still highly valued and desirable by researchers and railway industry. This paper 

presents analytical solution representing dynamic response of railway track due to moving train in the case 

of nonlinear foundation. In published papers, one can find analyses of various characteristics such as 

velocity and acceleration of vibrations of track layers or bending moments of rails. The approach applied in 

this paper uses the Fourier transform combined with wavelet based approximation applied to the systems of 

infinitely long beams. The system of Euler-Bernoulli beams resting on viscoelastic foundation represents 

two-layer model (or one-layer model) of railway track, commonly used in engineering studies. It is shown 

that although both methods give good results for displacements, analysis of other characteristics, involving 

derivatives of higher orders, might lead to wrong results, even in the linear case. Possible reasons of this 

problem are pointed out. Some modifications of the known dynamic railway track models are proposed for 

further work. 

1 Introduction  

Railway track structures can be modelled with a use of 

many different approaches. FEM based techniques 

which are widely used in the literature give possibility of 

discussion of many dynamic effects appearing in rail 

tracks [1, 2]. Many published results show, however, that 

they might be burdened with quite significant error and, 

additionally, need high computational power. This 

makes them difficult to apply in many cases, especially 

in dynamical systems parametrical analysis. Alternative 

approaches are based on analytical computations, mainly 

using mathematical formulations, i.e. differential 

equations with initial and boundary conditions [3, 4]. 

Such methods allow to analyse desirable features of 

railway track components, if their description by 

analytical formulas is possible. Usefulness  of such a 

model depends in turn on ability of introduction of 

additional assumptions to the system, e.g. nonlinear or 

stochastic properties. The approximation theory gives 

reliable tools helping to solve these complex systems [3, 

5, 6]. Procedures arising from these techniques are 

usually effective when one deals only directly with exact 

solution without further computations involving 

differentiation or integration [7]. 

In the literature, one can observe a lack of analytical 

methods for a proper rail stress evaluation. This paper 

shows two analytical models of railway tracks: one-layer 

model and two-layer model. Both these models, although 

suitable for evaluation of vertical vibrations (or their 

velocity and acceleration), lead to wrong results with 

regard to characteristics using derivatives in relation to 

space variable (e.g. rail bending stress). Question of 

applicability of the analysed models and methods is 

partially discussed. Some possible ways of models 

improvements are mentioned as future work.  

2 Railway track modelled by differential 
equations  

Two analytical models of railway track are considered in 

this paper. The one-layer model representing rail vertical 

vibrations is described by the Euler-Bernoulli beam 

resting on viscoelastic foundation with nonlinear 

stiffness. This model is represented by the following 

equation: 
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The two-layer model can be described by the following 

system of two differential equations: 
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 (2) 

The first equation represents rail and the second one 

describes sleepers layer. The used parameters are: EI 

[Nm
2
] – bending stiffness of rail steel, N [N] – axial 

force, mr [kg/m] – rail unit mass, kr [N/m
2
] – stiffness of 
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fasteners, cr [Ns/m
2
] – viscous damping of fasteners, ms 

[kg/m] – unit mass of sleepers uniformly distributed 

along the track. Effect of sleepers bending is neglected. 

The two parameters: ks [N/m
2
] and cs [Ns/m

2
] denote 

stiffness and viscous damping of sleepers foundation, 

respectively. Geometrical imperfections of rolling 

surface of the rail head are represented by regular cosine 

wave with frequency Ω [rad/m] and amplitude s0 [m]. 

The load q [N/m] is considered as a set of distributed 

forces produced by wheels of train and associated with 

train axles configuration. In the case of constant speed v 

[km/h], geometrical imperfections produce the varying 

forces with circular frequency ω=Ωv and the amplitude 

Fs=s0kc. These forces are distributed on the wheel-rail 

contact area and the contact is modelled by a single 

spring kc. The terms 
3

rrN yk  (eq. (1)) and 
3

ssN yk  (eq. 

(2)) represent nonlinear factor associated with nonlinear 

part of rail foundation stiffness rNk [N/m
4
]  and rail track 

foundation stiffness sNk [N/m
4
], respectively [6, 8, 9]. 

One can apply the moving coordinate system (η=x, ξ=x-

vt) to equations (1-2) and then these formulas can be 

transformed to the following form: 
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 (3) 

and 
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 (4a) 
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 (4b) 

These models can be solved by applying either the 

Fourier series or the Fourier transform, depending on 

assumptions with regard to the E-B beams and the 

decision about the nonlinearity investigation. 

The load representing moving train can be described as 

follows: 
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where 
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is the stationary part of load, i.e. constant in time, and 
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represents the part of load varying in time, produced by 

rail head surface imperfections of cosine form and 

constant amplitude. (.)H , a2 , ls , Tl ,   and V  are the 

Heaviside function, the span of each load related to 

single wheel, the distance of consecutive forces 

produced by wheels, the number of axles, the frequency 

and the velocity of the moving load, respectively. The 

axles configuration can be also introduced by inclusion 

of the phase shift associated with the wheel position on 

the cosine shape of irregularity [3, 10]. 

3 Solution 

The following method of solution can be applied to both 

systems, (3) and (4a-4b), in the case of infinitely long 

beams. It deals also with the assumed nonlinearity of 

foundation stiffness. 

The cubic term representing nonlinearity can be 

expanded by Adomian polynomials [5, 6, 10]: 
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Both models, the one-layer and the two-layer can be 

solved by applying the Fourier transform 
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Because the form of solution in the transform domain 

becomes quite complicated, classical methods of 

retransformation are inefficient when applied to 

parametrical analysis. The response in the physical 

domain can be effectively obtained from the transform 

domain by applying the coiflet based approximation of 

the inverse Fourier transform [5, 6, 10]: 
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where N  is the degree of the used coiflet filter )( kp  

and pk  is a number evaluated on the basis of 

stabilization of the obtained solution [5, 6, 11]. 

4 Examples and discussion 

In the case of rail and sleepers displacement, one can 

find sufficiently exact solutions by applying the 

technique described in section 3. These solutions can be 

successfully used in parametrical analysis when one 

takes into account engineering applications. They have 

been also verified by experimental measurements [10, 

12]. In the case of stresses produced by dynamic 

excitations, the problem of analytical modelling becomes 

more difficult. 

The following system of parameters is taken in 

preparation of examples: 

EI = 6.4*10
6
 Nm

2
, N = 0, mr = 60 kg/m, kr = 8.8*10

7
 

N/m
2
, cr = 3950 Ns/m

2
, ms = 267 kg/m, ks = 8.5*10

7 

N/m
2
, cs = 8.2*10

3
 Ns/m

2
 and v = 150 km/h. The 

nonlinear stiffness coefficients krN and ksN  can be taken 

similarly to values considered in past publications [6, 10-

12], although it is neglected in this paper for calculation 

of normal bending stress. It is assumed that the part of 

load PD (see eq. (6b)) is related to the rail deflection 

between sleepers and there are no other imperfections on 

rolling surface of rail head. The axles configuration of 

fast train Pendolino EMU250 is also considered. The 

time t = 0 denotes the moment in which the first axle (the 

centre of the distribution area of the first force) is 

passing by the observation point. 
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Fig. 1. Vertical vibrations of rail. 

 

Figure 1 presents the dynamic response of railway track 

to moving train in terms of vertical displacements of 

rails obtained analytically by using the two-layer model 

and the coiflet based technique in the case of linear 

foundation stiffness.  
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Fig. 2. Velocity of rail vertical vibrations. 
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Fig. 3. Vertical vibrations acceleration. 

 

Figures 2-3 show vibration velocity and vibration 

acceleration for the same system of parameters. As 

mentioned before, the results for vertical vibrations have 

been verified experimentally [10, 12]. When one deals 

with vibrations velocity or acceleration, the obtained 

results need to be verified by experimental 

measurements or other methods of solution for extended 

range of parameters, although maximal values are close 

to real ones, at least in the case of the track in relatively 

good condition. Some doubts arise from the analysis of 

the normal bending stresses, involving derivatives of 

higher order with respect to the space variable. It can be 

observed that analytically obtained results significantly 

exceed limit values of the strength of rail steel R260 

(around 800 MPa). 
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Fig. 4. Distribution of normal stress in rail obtained by using 

two-layer model and wavelet approximation. 

 



 

Figure 4 presents the normal stress distribution in rail 

with irregularity related to the sleeper spacing, showing 

the method ability to analytically calculate stresses. 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Differences of maximal normal stress values in rail axis, 

for the considered range of speeds, depending on the length 

[mm] of cosine imperfection [7]. 

 

For some lengths of waves, associated with the 

considered type of irregularity appearing on rail head 

rolling surface, the maximal value of the normal stress 

can significantly exceed the limit value (a few hundred 

percent and more). For example, for the length of 

irregularity equal to 30 cm (cosine type of imperfection), 

which is twice less than the distance between sleepers, 

and the train speed v = 200 km/h, the obtained maximal 

value of the normal stress in rail axis can be estimated at 

around 1500 MPa. This value is obtained under 

assumption that the force generated by the considered 

irregularity is the same as for a length of 60 cm, which 

corresponds to the sleepers spacing. In reality, this 

additional dynamic force can be stronger and therefore 

the resulting normal stress should reach higher values. 

Figure 5 shows differences of maximal normal stress 

values in rail axis, obtained for the train speed between 

50 km/h and 350 km/h, depending on the length [mm] of 

cosine imperfection, under described above assumption 

about forces. 

The project [7] was aimed at showing examples of 

analytically derived stresses exceeding limit values when 

using models validated and known from the literature. 

The analysis was carried out for a wide range of physical 

parameters and train speeds showing that a lack of 

appropriate methods (models) for the normal stress 

calculation should be underlined. 

5 Conclusions 

One can observe that the obtained results for normal 

bending stress in rail axis exceed, for some systems of 

parameters, limit values independently of model and 

method of analytical solution. One can say that applied 

approaches (models and/or methods) are insufficient for 

stresses analysis. In order to improve this analysis, one 

might suggest consideration of additional mechanical 

features of the investigated systems. These features 

remain unrecognised so far. In future, they should lead to 

reformulation of railway track models. Among them, one 

should mention a more detailed approach to rail 

modelling. This modification should avoid treating the 

rail as a homogeneous beam. Some preliminary results 

are obtained for “head on web” problem or rail internal 

damping included in the dynamic beam equation. These 

results are valid for some specific range of parameters 

only. They are especially strongly dependent on the load 

frequency. Therefore the undertaken analysis is not 

satisfactory and should be extended. One should 

underline that all analytical models and the wavelet 

based method considered in this paper are valid for rails 

and sleepers vertical displacement analysis. 
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