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Abstract. This paper studies the dynamics of vibro-impact capsule systems with one-sided and double-sided
constraints under variations of control parameters, including frequency of excitation, mass ratio, and stiffness
ratio. The aim of this study is to promote the forward speed ofthe capsule system. Extensive comparisons
reveal that the capsule system with one-sided constraint isbetter than the one with double-sided constraints in
terms of progression speed. Moreover, the system’s period-one one-right-impact motion is proved as the ideal
vibration condition due to its lowest energy consumption for impacts. According to the dynamic analyses of
control parameters, an inner mass with its weight similar asthe weight of capsule and a right constraint with a
relative weak stiffness are beneficial for further accelerating the capsule system forwards.

1 Introduction

Pipelines play an important role in a large number of mod-
ern industries, which are essential for oil and gas transport,
water supplies, and so on. With many pipelines being lo-
cated in remote and harsh locations, such as underground
or seabed, access for inspection, maintenance and repair
work could be extremely difficult. Moreover, it becomes a
costly issue if the pipeline has to be drained and production
stopped while repair work takes place. Therefore, pipeline
inspection devices capable of moving independently, with
or against product flow would yield significant advantages
over traditional pressure driven inspection tool in certain
situations. In recent years, investigation of such a self-
propelled mechanism moving rectilinearly under internal
vibration force when overcoming medium resistance has
attracted great attention from researchers, e.g. [1–5]. The
principle of such mechanism is that the rectilinear mo-
tion can be obtained by overcoming external resistance
described as dry friction using an additional internal mass
interacting with the main body of the system.

The dynamics of the vibro-impact capsule system,
which consists of a capsule main body interacting with a
harmonically driven internal mass, has been studied ex-
tensively by Liu et al. [5–11]. In [5], the model of the
vibro-impact capsule system was firstly studied to provide
a fundamental understanding of its dynamics. Dynamics
of the system in various environments was investigated in
[6], and numerical results show that the behaviour of the
system becomes very complex when the capsule is mov-
ing in a fluid, but the nature of the friction mechanism be-
comes less significant when the weight of the internal mass
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is smaller than the weight of the capsule. In [7], the non-
linear dynamics analysis has been conducted to identify
the optimal amplitude and frequency of the applied force
to achieve the required motion and the maximal speed. In
[10], Páez Chávez et al. studied two practical problems
for the capsule system, which were maximizing the rate
of progression and directional control of the system by
following a typical period-1 trajectory by means of path-
following techniques. However, the above studies were
based on the dynamics of the capsule system with one-
sided constraint, and the performance of the system with
double-sided constraints has not been investigated. Thus,
it is reasonable to carry out a comparative study of vibro-
impact capsule systems with one-sided and double-sided
constraints in this paper, which can provide a better in-
sight for design of such system with consideration of the
optimum rate of progression.

The rest of this paper is organized as follows. In Sec-
tion 2, mathematical modelling of the vibro-impact cap-
sule systems with one-sided and double-sided constraints
is studied. In Section 3, a comparative study of both the
capsule systems through varying control parameters to ex-
plore the optimum rate of progression are conducted. Fi-
nally, some concluding remarks are drawn in Section 4.

2 Mathematical Modelling

Consider a two degrees-of-freedom system as shown in
Fig. 1, which is composed of a movable internal massm1

interacting with a rigid capsulem2 via a primary linear
spring with stiffnessk and a viscous damper with damping
coefficient c. The internal mass is driven by an external
harmonic force with amplitudePd and frequencyΩ. The



vibro-impact capsule system with double-sided constraint
is shown in Fig. 1(b). Specifically, on the right of the inter-
nal mass, a weightless plate is connected to the capsule by
a linear spring with stiffnessk1, and a secondary weight-
less plate is connected to the capsule by a linear spring
with stiffnessk2 on the left of the internal mass. Here,X1

andX2 represent the absolute displacements of the inter-
nal mass and the capsule, respectively. The internal mass
will contact with the right plate when the relative displace-
mentX1 − X2 is larger or equals to the gapG1, or contact
with the left plate when the relative displacementX2 − X1

is larger or equals to the gapG2. When the left spring is
removed (i.e. k2 = 0), the vibro-impact capsule system
with one-sided constraint is obtained, see Fig. 1(a).

Figure 1. Physical models of the vibro-impact capsule systems
with (a) one-sided and (b) double-sided constraints [12].

Introduce nondimensional parameters

Ω0 =

√

k
m1
, ω =

Ω

Ω0
, α =

Pd

P f
, ζ =

c
2m1Ω0

,

γ =
m2

m1
, g1 =

k
P f

G1, g2 =
k

P f
G2, β1 =

k1

k
, β2 =

k2

k
,

and nondimensional variables

τ = Ω0t, x1 =
k

P f
X1, x2 =

k
P f

X2,

y1 =
dx1

dτ
=

k
Ω0P f

Ẋ1, y2 =
dx2

dτ
=

k
Ω0P f

Ẋ2.

The nondimensional equations of motion are written as

ẋ1(τ) = y1(τ),

ẏ1(τ) = α cos(ωτ) + fi,

ẋ2(τ) = y2(τ),

ẏ2(τ) =
1
γ

(

fi + (1− δy)S y + δyH f S f + δy(1− H f ) fi
)

,

where

fi = −2ζ(y1(τ) − y2(τ)) − (x1(τ) − x2(τ))

−H1β1(x1(τ) − x2(τ) − g1)

−H2β2(x1(τ) − x2(τ) + g2),

H1 = H(x1(τ) − x2(τ) − g1),

H2 = H(x2(τ) − x1(τ) − g2),

H f = H(| fi| − 1),

δy = δ(y2(τ)),

S y = sign(y2(τ)),

S f = sign(fi).

3 Bifurcation analysis

In order to compare the system dynamics and promote the
progression speed of a capsule, bifurcation analyses were
carried out for both the capsule systems with one-sided
and double-sided constraints by varying control param-
eters, including frequency of excitation, mass ratio, and
stiffness ratio. The simulations were run for 200 cycles of
the external excitation, and the data for the first 180 cycles
were omitted to ensure the steady state responses, where
the last 20 cycles were used to plot bifurcation diagrams,
phase portraits, and time series. Specifically, the relative
displacement (x1 − x2) is plotted as a function of the con-
trol parameters to obtain bifurcation diagrams; the relative
velocity (y1−y2) against the relative displacement (x1−x2)
is plotted to obtain phase portraits.

3.1 Frequency of excitation

To investigate the influence of excitation frequencyω on
the capsule progression, numerical simulations are car-
ried out for ω ∈ [0.5, 2.0], and the simulation results
are presented in Fig. 2. According to the comparison of
subplots (a) and (b), the dynamic responses of the cap-
sule system with one-sided constraint are mainly periodic,
while the chaotic motion is observed for the capsule sys-
tem with two-sided constraints when the excitation fre-
quency is low. Additionally, a number of jumps of the rel-
ative displacement are observed in bifurcation diagrams,
they are due to the grazing when the inner mass contacts
with the constraints. Subplots (c), (d) show the progres-
sions per unit time and per unit power for the capsule sys-
tem with one-sided constraint, respectively. Both of their
optimum progressions are achieved atω = 1.005 where a
period-one one-right-impact motion is detected. Subplots
(e), (f) show the corresponding results for the capsule sys-
tem with double-sided constraint, whose maximal progres-
sion speed is about 1/3 of that for the capsule system with
one-sided constraint.

3.2 Mass ratio

The effects of mass ratioγ on the dynamic responses
of both the capsule systems are studied via varyingγ ∈
[1, 10], and the obtained numerical results are shown in
Fig. 3. One can observe from subplots (a) and (b) that,
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Figure 2. Bifurcation analyses of excitation frequency for the capsule systems with one-sided (a) and double-sided (b) constraints. The
nondimensional parameters areω ∈ [0.5, 2.0], ξ = 0.05,γ = 4, a = 1.6, β1 = 12,g1 = 0.02,β2 = 5, g2 = −0.06. The labels shown as
P-n-m-l indicate that the trajectory is a period-n responsewith m left impacts and l right impacts. The vertical green and orange lines
in panels represent the impact boundariesx1 − x2 = g2 andx1 − x2 = g1, respectively. Subplots (c), (d) show the progressions perunit
time and per unit power for the capsule system with one-sidedconstraint, respectively. Subplots (e), (f) show the progressions for the
capsule system with double-sided constraint. The positionP marked by a red circle indicates the obtained optimum progression, its
corresponding phase portrait and time series of displacements for the inner mass (black) and the capsule (red) are displayed.

both the capsule systems experience a period-doubling and
a reverse period doubling bifurcations as the increase of
mass ratio. For the capsule system with double-sided con-
straints, the capsule moves backwards, see subplots (e)
and (f); namely, the backward impacts dominate the cap-
sule movement. As a comparison, the capsule system with
one-sided constraint maintains forward progression with
the progression speed deceasing as the mass ratio is in-
creased, see subplots (c) and (d). This observation indi-
cates that a relatively small mass is hard to vibrate a large
capsule; therefore, it is better to design the weight of the
inner mass closing to that of the capsule.

3.3 Stiffness ratio

The dynamic responses of the capsule systems under vary-
ing the right stiffness ratio,β1 ∈ [2, 20], are investigated,
and the obtained numerical results are presented in Fig. 4.
As can be seen from subplots (c) and (d), the fastest pro-
gression speed of the capsule system with one-sided con-
straint is achieved atβ1 = 6.05 where a period-doubling
bifurcation is observed. Similarly, the fastest progression
speed of the capsule system with double-sided constraint
is achieved atβ1 = 4.10 where a grazing bifurcation is
detected, see subplots (e) and (f). Before appearance of
the bifurcations, period-one motions are observed, and the
progression speed keeps increasing as the increase of stiff-

ness ratio, and then it drops quickly when passing the bi-
furcations. In addition, comparing the two capsule sys-
tems with the same right stiffness ratio, the capsule system
with one-sided constraint moves forwards faster.

4 Concluding Remarks

Dynamic analysis of a vibro-impact capsule system to pro-
mote the progression speed was carried out in this paper.
Different capsule structures were compared and a series of
control parameters was analyzed. Extensive comparisons
revealed that the capsule system with one-sided constraint
was better than that with double-sided constraints in terms
of progression speed; moreover, the system’s period-one
one-right-impact motion was proved as the ideal vibration
condition due to its lowest energy consumption for im-
pacts. Meanwhile, according to the dynamic analyses of
control parameters, an inner mass with its weight closing
to the weight of capsule and a right constraint with the
relative weak stiffness could be beneficial to further accel-
erate the motion of the capsule.
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Figure 4. Bifurcation analyses of stiffness ratio for the capsule systems with one-sided (a) and double-sided (b) constraints. The
nondimensional parameters areβ1 ∈ [2, 20], γ = 4, a = 1.6, ω = 1.1, ξ = 0.05, g1 = 0.02, β2 = 5, g2 = −0.06. Subplots (c), (d)
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